1. 磐创AI-开放猫官方网站首页
  2. 机器学习
  3. TensorFlowNews

DrQA 阅读维基百科来回答开放问题 Reading Wikipedia to Answer Open-Domain Questions

DrQA 是一个阅读理解系统应用于开放领域的问答。

项目由 https://github.com/facebookresearch 发布。
项目地址:https://github.com/facebookresearch/DrQA

DrQA 是一个阅读理解系统用在开放领域问答。特别的,DrQA 针对一个机器阅读任务。在这个列表里,我们为一个潜在非常大的预料库中搜索一个问题的答案。所以,这个系统必须结合文本检索和机器文本理解。
我们实验 DrQA 专注于回答事实类问题,同时使用维基百科作为惟一的知识来源。维基百科是一个结构良好的大量,丰富,详细的文本来源。为了问答所有的问题,首先要接收一些潜在的相关文章,从5百万篇文章中,然后仔细扫描这些文本来找到答案。

DrQA is a system for reading comprehension applied to open-domain question answering. In particular, DrQA is targeted at the task of “machine reading at scale” (MRS). In this setting, we are searching for an answer to a question in a potentially very large corpus of unstructured documents (that may not be redundant). Thus the system has to combine the challenges of document retrieval (finding the relevant documents) with that of machine comprehension of text (identifying the answers from those documents).

Our experiments with DrQA focus on answering factoid questions while using Wikipedia as the unique knowledge source for documents. Wikipedia is a well-suited source of large-scale, rich, detailed information. In order to answer any question, one must first retrieve the few potentially relevant articles among more than 5 million, and then scan them carefully to identify the answer.

原创文章,作者:fendouai,如若转载,请注明出处:https://panchuang.net/2017/07/27/drqa-reading-wikipedia-to-answer-open-domain-questions/

发表评论

登录后才能评论

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息