1. 磐创AI-开放猫官方网站首页
  2. 机器学习
  3. TensorFlowNews

利用OpenCV和深度学习实现人脸检测

利用OpenCV和深度学习实现人脸检测

来源|Cver

前言:[1]:主要参考Face detection with OpenCV and deep learning这个英文教程,并作部分修改。[2]:亲测OpenCV3.3.0及以下版本,并没有face_detector示例,且不支持face_detector。为了避免折腾,还是建议使用OpenCV3.3.1及以上(如OpenCV3.4)。


1 face_detector简介

face_detector示例链接:

https://github.com/opencv/opencv/tree/master/samples/dnn/face_detector


利用OpenCV和深度学习实现人脸检测

当电脑配置好OpenCV3.3.1或以上版本时,在opencvsamplesdnn也可以找到face_detector示例文件夹,如下图所示:

利用OpenCV和深度学习实现人脸检测

使用OpenCV的DNN模块以及Caffe模型,必须要有.prototxt和.caffemodel两种文件。但face_detector文件夹中,只有.prototxt一类文件,即缺少训练好的.caffemodel。.prototxt和.caffemodel的作用如下:

  • The .prototxt file(s) which define the model architecture (i.e., the layers themselves)

  • The .caffemodel file which contains the weights for the actual layers


face_detector文件分析:

  • deploy.prototxt:调用.caffemodel时的测试网络文件

  • how_to_train_face_detector.txt:如何使用自定义数据集来训练网络的说明

  • solver.prototxt:超参数文件

  • test.prototxt:测试网络文件

  • train.prototxt:训练网络文件


本教程直接使用训练好的.caffemodel来进行人脸检测,即只需要.caffemodel和deploy.prototxt两个文件。如果想要使用自己的数据集来训练网络,请参考”how_to_train_face_detector.txt”。


2 ResNet-10和SSD简介

本教程属于实战篇,故不深入介绍算法内容,若对ResNet和SSD感兴趣的同学,可以参考下述链接进行学习

[1]ResNet paper:https://arxiv.org/abs/1512.03385

[2]ResNet in Caffe:https://github.com/soeaver/caffe-model/tree/master/cls/resnet

[3]SSD paper:https://arxiv.org/abs/1512.02325

[4]SSD in Caffe:https://github.com/weiliu89/caffe/tree/ssd


3 .caffemodel下载

res10_300x300_ssd_iter_140000.caffemodel下载链接:https://anonfile.com/W7rdG4d0b1/face_detector.rar


4 C++版本代码

4.1 图像中的人脸检测

对于OpenCV3.4版本,可直接使用opencv-3.4.1samplesdnn文件夹中的resnet_ssd_face.cpp;


对于OpenCV3.3.1版本,可参考下述代码:


face_detector_image.cpp

 1// Summary: 使用OpenCV3.3.1中的face_detector对图像进行人脸识别
 2
 3// Author: Amusi
 4
 5// Date:   2018-02-28
 6
 7#include <iostream>
 8#include <opencv2/opencv.hpp>
 9#include <opencv2/dnn.hpp>
10
11using namespace std;
12using namespace cv;
13using namespace cv::dnn;
14
15
16// Set the size of image and meanval
17const size_t inWidth = 300;
18const size_t inHeight = 300;
19const double inScaleFactor = 1.0;
20const Scalar meanVal(104.0, 177.0, 123.0);
21
22
23
24int main(int argc, char** argv)
25
{
26    // Load image
27    Mat img;
28    // Use commandline
29#if 0
30
31    if (argc < 2)
32    {
33        cerr<< "please input "<< endl;
34        cerr << "[Format]face_detector_img.exe image.jpg"<< endl;
35        return -1;
36    }
37
38    img = imread(argv[1]);
39
40#else
41    // Not use commandline
42    img = imread("iron_chic.jpg");
43#endif
44
45
46
47    // Initialize Caffe network
48    float min_confidence = 0.5;
49
50    String modelConfiguration = "face_detector/deploy.prototxt";
51
52    String modelBinary = "face_detector/res10_300x300_ssd_iter_140000.caffemodel";
53
54    dnn::Net net = readNetFromCaffe(modelConfiguration, modelBinary);
55
56
57
58    if (net.empty())
59    {
60        cerr << "Can't load network by using the following files: " << endl;
61        cerr << "prototxt:   " << modelConfiguration << endl;
62        cerr << "caffemodel: " << modelBinary << endl;
63        cerr << "Models are available here:" << endl;
64        cerr << "<OPENCV_SRC_DIR>/samples/dnn/face_detector" << endl;
65        cerr << "or here:" << endl;
66        cerr << "https://github.com/opencv/opencv/tree/master/samples/dnn/face_detector" << endl;
67        exit(-1);
68    }
69
70
71
72    // Prepare blob
73    Mat inputBlob = blobFromImage(img, inScaleFactor, Size(inWidth, inHeight), meanVal, false, false);
74    net.setInput(inputBlob, "data");    // set the network input
75    Mat detection = net.forward("detection_out");    // compute output
76
77    // Calculate and display time and frame rate
78
79    vector<double> layersTimings;
80    double freq = getTickFrequency() / 1000;
81    double time = net.getPerfProfile(layersTimings) / freq;
82
83    Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>());
84    ostringstream ss;
85    ss << "FPS: " << 1000 / time << " ; time: " << time << "ms" << endl;
86
87    putText(img, ss.str(), Point(20,20), 0, 0.5, Scalar(0, 0, 255));
88
89    float confidenceThreshold = min_confidence;
90    for (int i = 0; i < detectionMat.rows; ++i)
91    {
92        // judge confidence
93        float confidence = detectionMat.at<float>(i, 2);
94
95        if (confidence > confidenceThreshold)
96        {
97            int xLeftBottom = static_cast<int>(detectionMat.at<float>(i, 3) * img.cols);
98            int yLeftBottom = static_cast<int>(detectionMat.at<float>(i, 4) * img.rows);
99            int xRightTop = static_cast<int>(detectionMat.at<float>(i, 5) * img.cols);
100            int yRightTop = static_cast<int>(detectionMat.at<float>(i, 6) * img.rows);
101            Rect object((int)xLeftBottom, (int)yLeftBottom, (int (xRightTop - xLeftBottom),
102            (int)(yRightTop - yLeftBottom))
;
103            rectangle(img, object, Scalar(0, 255, 0));
104            ss.str("");
105            ss << confidence;
106            String conf(ss.str());
107            String label = "Face: " + conf;
108            int baseLine = 0;
109            Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
110            rectangle(img, Rect(Point(xLeftBottom, yLeftBottom-labelSize.height),
111            Size(labelSize.width, labelSize.height + baseLine)),
112            Scalar(255, 255, 255), CV_FILLED);
113            putText(img, label, Point(xLeftBottom, yLeftBottom),
114            FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 0));
115
116        }
117    }
118
119    namedWindow("Face Detection", WINDOW_NORMAL);
120    imshow("Face Detection", img);
121    waitKey(0);
122
123return 0;
124
125}


检测结果

利用OpenCV和深度学习实现人脸检测



4.2 摄像头/视频中的人脸检测


face_detector_video.cpp

 1// Summary: 使用OpenCV3.3.1中的face_detector
 2// Author: Amusi
 3// Date:   2018-02-28
 4// Reference: http://blog.csdn.net/minstyrain/article/details/78907425
 5
 6#include <iostream>  
 7#include <cstdlib>  
 8#include <stdio.h>
 9#include <opencv2/opencv.hpp>
10#include <opencv2/dnn.hpp>
11#include <opencv2/dnn/shape_utils.hpp>
12
13using namespace cv;  
14using namespace cv::dnn;  
15using namespace std;  
16const size_t inWidth = 300;  
17const size_t inHeight = 300;  
18const double inScaleFactor = 1.0;  
19const Scalar meanVal(104.0, 177.0, 123.0);  
20
21int main(int argc, char** argv)  
22
{  
23    float min_confidence = 0.5;  
24    String modelConfiguration = "face_detector/deploy.prototxt";  
25    String modelBinary = "face_detector/res10_300x300_ssd_iter_140000.caffemodel";  
26    //! [Initialize network]  
27    dnn::Net net = readNetFromCaffe(modelConfiguration, modelBinary);  
28    //! [Initialize network]  
29    if (net.empty())  
30    {  
31        cerr << "Can't load network by using the following files: " << endl;  
32        cerr << "prototxt:   " << modelConfiguration << endl;  
33        cerr << "caffemodel: " << modelBinary << endl;  
34        cerr << "Models are available here:" << endl;  
35        cerr << "<OPENCV_SRC_DIR>/samples/dnn/face_detector" << endl;  
36        cerr << "or here:" << endl;  
37        cerr << "https://github.com/opencv/opencv/tree/master/samples/dnn/face_detector" << endl;  
38        exit(-1);  
39    }  
40
41    VideoCapture cap(0);  
42    if (!cap.isOpened())  
43    {  
44        cout << "Couldn't open camera : " << endl;  
45        return -1;  
46    }  
47    for (;;)  
48    {  
49        Mat frame;  
50        cap >> frame; // get a new frame from camera/video or read image  
51
52        if (frame.empty())  
53        {  
54            waitKey();  
55            break;  
56        }  
57
58        if (frame.channels() == 4)  
59            cvtColor(frame, frame, COLOR_BGRA2BGR);  
60
61        //! [Prepare blob]  
62        Mat inputBlob = blobFromImage(frame, inScaleFactor,  
63            Size(inWidth, inHeight), meanVal, false, false); //Convert Mat to batch of images  
64                                                             //! [Prepare blob]  
65
66                                                             //! [Set input blob]  
67        net.setInput(inputBlob, "data"); //set the network input  
68                                         //! [Set input blob]  
69
70                                         //! [Make forward pass]  
71        Mat detection = net.forward("detection_out"); //compute output  
72                                                      //! [Make forward pass]  
73
74        vector<double> layersTimings;  
75        double freq = getTickFrequency() / 1000;  
76        double time = net.getPerfProfile(layersTimings) / freq;  
77
78        Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>());  
79
80        ostringstream ss;  
81        ss << "FPS: " << 1000 / time << " ; time: " << time << " ms";  
82        putText(frame, ss.str(), Point(20, 20), 0, 0.5, Scalar(0, 0, 255));  
83
84        float confidenceThreshold = min_confidence;  
85        for (int i = 0; i < detectionMat.rows; i++)  
86        {  
87            float confidence = detectionMat.at<float>(i, 2);  
88
89            if (confidence > confidenceThreshold)  
90            {  
91                int xLeftBottom = static_cast<int>(detectionMat.at<float>(i, 3) * frame.cols);  
92                int yLeftBottom = static_cast<int>(detectionMat.at<float>(i, 4) * frame.rows);  
93                int xRightTop = static_cast<int>(detectionMat.at<float>(i, 5) * frame.cols);  
94                int yRightTop = static_cast<int>(detectionMat.at<float>(i, 6) * frame.rows);  
95
96                Rect object((int)xLeftBottom, (int)yLeftBottom,  
97                    (int)(xRightTop - xLeftBottom),  
98                    (int)(yRightTop - yLeftBottom))
;  
99
100                rectangle(frame, object, Scalar(0, 255, 0));  
101
102                ss.str("");  
103                ss << confidence;  
104                String conf(ss.str());  
105                String label = "Face: " + conf;  
106                int baseLine = 0;  
107                Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);  
108                rectangle(frame, Rect(Point(xLeftBottom, yLeftBottom - labelSize.height),  
109                    Size(labelSize.width, labelSize.height + baseLine)),  
110                    Scalar(255, 255, 255), CV_FILLED);  
111                putText(frame, label, Point(xLeftBottom, yLeftBottom),  
112                    FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 0));  
113            }  
114        }  
115        cv::imshow("detections", frame);  
116        if (waitKey(1) >= 0) break;  
117    }  
118    return 0;  
119}  


检测结果

利用OpenCV和深度学习实现人脸检测




5 Python版本代码

最简单安装Python版的OpenCV方法

  • pip install opencv-contrib-python

对于OpenCV3.4版本,可直接使用opencv-3.4.1samplesdnn文件夹中的resnet_ssd_face_python.py;

对于OpenCV3.3.1版本,可参考下述代码(自己写的):


5.1 图像中的人脸检测


detect_faces.py

1# USAGE
2# python detect_faces.py --image rooster.jpg --prototxt deploy.prototxt.txt --model res10_300x300_ssd_iter_140000.caffemodel
3
4# import the necessary packages
5import numpy as np
6import argparse
7import cv2
8
9# construct the argument parse and parse the arguments
10ap = argparse.ArgumentParser()
11ap.add_argument("-i", "--image", required=True,
12    help="path to input image")
13ap.add_argument("-p", "--prototxt", required=True,
14    help="path to Caffe 'deploy' prototxt file")
15ap.add_argument("-m", "--model", required=True,
16    help="path to Caffe pre-trained model")
17ap.add_argument("-c", "--confidence", type=float, default=0.5,
18    help="minimum probability to filter weak detections")
19args = vars(ap.parse_args())
20
21# load our serialized model from disk
22print("[INFO] loading model...")
23net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
24
25# load the input image and construct an input blob for the image
26# by resizing to a fixed 300x300 pixels and then normalizing it
27image = cv2.imread(args["image"])
28(h, w) = image.shape[:2]
29blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0,
30    (300, 300), (104.0, 177.0, 123.0))
31
32# pass the blob through the network and obtain the detections and
33# predictions
34print("[INFO] computing object detections...")
35net.setInput(blob)
36detections = net.forward()
37
38# loop over the detections
39for i in range(0, detections.shape[2]):
40    # extract the confidence (i.e., probability) associated with the
41    # prediction
42    confidence = detections[0, 0, i, 2]
43
44    # filter out weak detections by ensuring the `confidence` is
45    # greater than the minimum confidence
46    if confidence > args["confidence"]:
47        # compute the (x, y)-coordinates of the bounding box for the
48        # object
49        box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
50        (startX, startY, endX, endY) = box.astype("int")
51
52        # draw the bounding box of the face along with the associated
53        # probability
54        text = "{:.2f}%".format(confidence * 100)
55        y = startY - 10 if startY - 10 > 10 else startY + 10
56        cv2.rectangle(image, (startX, startY), (endX, endY),
57            (0, 0, 255), 2)
58        cv2.putText(image, text, (startX, y),
59            cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)
60
61# show the output image
62cv2.imshow("Output", image)
63cv2.waitKey(0)


打开cmd命令提示符,切换至路径下,输入下述命令:

  • python detect_faces.py –image rooster.jpg –prototxt deploy.prototxt.txt –model res10_300x300_ssd_iter_140000.caffemodel


检测结果

利用OpenCV和深度学习实现人脸检测

  • python detect_faces.py –image iron_chic.jpg –prototxt deploy.prototxt.txt –model res10_300x300_ssd_iter_140000.caffemodel


检测结果

利用OpenCV和深度学习实现人脸检测



5.2 摄像头/视频中的人脸检测

detect_faces_video.py

1# USAGE
2# python detect_faces_video.py --prototxt deploy.prototxt.txt --model res10_300x300_ssd_iter_140000.caffemodel
3
4# import the necessary packages
5from imutils.video import VideoStream
6import numpy as np
7import argparse
8import imutils
9import time
10import cv2
11
12# construct the argument parse and parse the arguments
13ap = argparse.ArgumentParser()
14ap.add_argument("-p", "--prototxt", required=True,
15    help="path to Caffe 'deploy' prototxt file")
16ap.add_argument("-m", "--model", required=True,
17    help="path to Caffe pre-trained model")
18ap.add_argument("-c", "--confidence", type=float, default=0.5,
19    help="minimum probability to filter weak detections")
20args = vars(ap.parse_args())
21
22# load our serialized model from disk
23print("[INFO] loading model...")
24net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
25
26# initialize the video stream and allow the cammera sensor to warmup
27print("[INFO] starting video stream...")
28vs = VideoStream(src=0).start()
29time.sleep(2.0)
30
31# loop over the frames from the video stream
32while True:
33    # grab the frame from the threaded video stream and resize it
34    # to have a maximum width of 400 pixels
35    frame = vs.read()
36    frame = imutils.resize(frame, width=400)
37
38    # grab the frame dimensions and convert it to a blob
39    (h, w) = frame.shape[:2]
40    blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0,
41        (300, 300), (104.0, 177.0, 123.0))
42
43    # pass the blob through the network and obtain the detections and
44    # predictions
45    net.setInput(blob)
46    detections = net.forward()
47
48    # loop over the detections
49    for i in range(0, detections.shape[2]):
50        # extract the confidence (i.e., probability) associated with the
51        # prediction
52        confidence = detections[0, 0, i, 2]
53
54        # filter out weak detections by ensuring the `confidence` is
55        # greater than the minimum confidence
56        if confidence < args["confidence"]:
57            continue
58
59        # compute the (x, y)-coordinates of the bounding box for the
60        # object
61        box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
62        (startX, startY, endX, endY) = box.astype("int")
63
64        # draw the bounding box of the face along with the associated
65        # probability
66        text = "{:.2f}%".format(confidence * 100)
67        y = startY - 10 if startY - 10 > 10 else startY + 10
68        cv2.rectangle(frame, (startX, startY), (endX, endY),
69            (0, 0, 255), 2)
70        cv2.putText(frame, text, (startX, y),
71            cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)
72
73    # show the output frame
74    cv2.imshow("Frame", frame)
75    key = cv2.waitKey(1) & 0xFF
76
77    # if the `q` key was pressed, break from the loop
78    if key == ord("q"):
79        break
80
81# do a bit of cleanup
82cv2.destroyAllWindows()
83vs.stop()

打开cmd命令提示符,切换至路径下,输入下述命令:

  • python detect_faces_video.py –prototxt deploy.prototxt.txt –model res10_300x300_ssd_iter_140000.caffemodel

如果程序出错,如ImportError: No module named imutils.video。这说明当前Python库中没有imutils库,所以可以使用pip安装:

  • pip install imutils


检测结果

利用OpenCV和深度学习实现人脸检测



总结

本教程介绍并使用了OpenCV最新提供的更加精确的人脸检测器(与OpenCV的Haar级联相比)。


这里的OpenCV人脸检测器是基于深度学习的,特别是利用ResNet和SSD框架作为基础网络。


感谢Aleksandr Rybnikov、OpenCV dnn模块和Adrian Rosebrock等其他贡献者的努力,我们可以在自己的应用中享受到这些更加精确的OpenCV人脸检测器。

为了你的方便,我已经为你准备了本教程所使用的必要文件,请见下述内容。


代码下载

deep-learning-face-detection.rar:https://anonfile.com/nft4G4d5b1/deep-learning-face-detection.rar


Reference

[1]Face detection with OpenCV and deep learning:https://www.pyimagesearch.com/2018/02/26/face-detection-with-opencv-and-deep-learning/

[2]face_detector:https://github.com/opencv/opencv/tree/master/samples/dnn/face_detector

[3]opencv3.4 发布 dnnFace震撼来袭:http://blog.csdn.net/minstyrain/article/details/78907425


转载声明:本文转载自「CVer」,搜索「CVerNews」即可关注。


利用OpenCV和深度学习实现人脸检测


☟☟☟点击 | 阅读原文 | 查看更多精彩内容
磐创AI:http://www.panchuangai.com/ 智能客服:http://www.panchuangai.com/ TensorFlow:http://panchuang.net 推荐关注公众号:磐创AI

原创文章,作者:fendouai,如若转载,请注明出处:https://panchuang.net/2018/04/15/be064bf2d5/

发表评论

登录后才能评论

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息