OpenCV-Python 系列 四 | 视频入门
本文是全系列中第1 / 63篇:OpenCV-Python
- OpenCV-Python 系列 四 | 视频入门
- OpenCV-Python 系列 十二 | 图像的几何变换
- OpenCV-Python 系列 二十 | 轮廓:入门
- OpenCV-Python 系列 二十八 | 直方图4:直方图反投影
- OpenCV-Python 系列 三十六 | 哈里斯角检测
- OpenCV-Python 系列 四十四 | 特征匹配 + 单应性查找对象
- OpenCV-Python 系列 五十二 | 理解K近邻
- OpenCV-Python 系列 六十 | 高动态范围
- OpenCV-Python 系列 五 | OpenCV中的绘图功能
- OpenCV-Python 系列 十三 | 图像阈值
- OpenCV-Python 系列 二十一 | 轮廓特征
- OpenCV-Python 系列 二十九 | 傅里叶变换
- OpenCV-Python 系列 三十七 | Shi-tomas拐角检测器和益于跟踪的特征
- OpenCV-Python 系列 四十五 | 如何使用背景分离方法
- OpenCV-Python 系列 五十三 | 使用OCR手写数据集运行KNN
- OpenCV-Python 系列 六十一 | 级联分类器
- OpenCV-Python 系列 六 | 鼠标作为画笔
- OpenCV-Python 系列 十四 | 图像阈值
- OpenCV-Python 系列 二十二 | 轮廓属性
- OpenCV-Python 系列 三十 | 模板匹配
- OpenCV-Python 系列 三十八 | SIFT尺度不变特征变换
- OpenCV-Python 系列 四十六 | Meanshift和Camshift
- OpenCV-Python 系列 五十四 | 理解SVM
- OpenCV-Python 系列 六十二 | 级联分类器训练
- OpenCV-Python 系列 七 | 轨迹栏作为调色板
- OpenCV-Python 系列 十五 | 图像平滑
- OpenCV-Python 系列 二十三 | 轮廓:更多属性
- OpenCV-Python 系列 三十一 | 霍夫线变换
- OpenCV-Python 系列 三十九 | SURF简介(加速的强大功能)
- OpenCV-Python 系列 四十七 | 光流
- OpenCV-Python 系列 五十五 | 使用OCR手写数据集运行SVM
- OpenCV-Python 系列 六十三 | OpenCV-Python Bindings 如何工作?
- OpenCV-Python 系列 八 | 图像的基本操作
- OpenCV-Python 系列 十六 | 形态学转换
- OpenCV-Python 系列 二十四 | 轮廓分层
- OpenCV-Python 系列 三十二 | 霍夫圈变换
- OpenCV-Python 系列 四十 | 用于角点检测的FAST算法
- OpenCV-Python 系列 四十八 | 相机校准
- OpenCV-Python 系列 五十六 | 理解K-Means聚类
- OpenCV-Python 系列 一 | 系列简介与目录
- OpenCV-Python 系列 九 | 图像上的算术运算
- OpenCV-Python 系列 十七 | 图像梯度
- OpenCV-Python 系列 二十五 | 直方图-1:查找、绘制和分析
- OpenCV-Python 系列 三十三 | 图像分割与Watershed算法
- OpenCV-Python 系列 四十一 | BRIEF(二进制的鲁棒独立基本特征)
- OpenCV-Python 系列 四十九 | 姿态估计
- OpenCV-Python 系列 五十七 | OpenCV中的K-Means聚类
- OpenCV-Python 系列 二 | 安装OpenCV-Python
- OpenCV-Python 系列 十 | 性能衡量和提升技术
- OpenCV-Python 系列 十八 | Canny边缘检测
- OpenCV-Python 系列 二十六 | 直方图-2:直方图均衡
- OpenCV-Python 系列 三十四 | 交互式前景提取使用GrabCut算法
- OpenCV-Python 系列 四十二 | ORB(面向快速和旋转的BRIEF)
- OpenCV-Python 系列 五十 | 对极几何
- OpenCV-Python 系列 五十八 | 图像去噪
- OpenCV-Python 系列 三 | 图像入门
- OpenCV-Python 系列 十一 | 改变颜色空间
- OpenCV-Python 系列 十九 | 图像金字塔
- OpenCV-Python 系列 二十七 | 直方图-3:二维直方图
- OpenCV-Python 系列 三十五 | 理解特征
- OpenCV-Python 系列 四十三 | 特征匹配
- OpenCV-Python 系列 五十一 | 立体图像的深度图
- OpenCV-Python 系列 五十九 | 图像修补
目标
- 学习读取视频,显示视频和保存视频。
- 学习从相机捕捉并显示它。
- 你将学习以下功能:cv.VideoCapture(),cv.VideoWriter()
从相机中读取视频
通常情况下,我们必须用摄像机捕捉实时画面。提供了一个非常简单的界面。让我们从摄像头捕捉一段视频(我使用的是我笔记本电脑内置的网络摄像头) ,将其转换成灰度视频并显示出来。只是一个简单的任务开始。
要捕获视频,你需要创建一个 VideoCapture 对象。它的参数可以是设备索引或视频文件的名称。设备索引就是指定哪个摄像头的数字。正常情况下,一个摄像头会被连接(就像我的情况一样)。所以我简单地传0(或-1)。你可以通过传递1来选择第二个相机,以此类推。在此之后,你可以逐帧捕获。但是在最后,不要忘记释放俘虏。
import numpy as np
import cv2 as cv
cap = cv.VideoCapture(0)
if not cap.isOpened():
print("Cannot open camera")
exit()
while True:
# 逐帧捕获
ret, frame = cap.read()
# 如果正确读取帧,ret为True
if not ret:
print("Can't receive frame (stream end?). Exiting ...")
break
# 我们在框架上的操作到这里
gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
# 显示结果帧e
cv.imshow('frame', gray)
if cv.waitKey(1) == ord('q'):
break
# 完成所有操作后,释放捕获器
cap.release()
cv.destroyAllWindows()
cap.read()
返回布尔值(True
/ False
)。如果正确读取了帧,它将为True
。因此,你可以通过检查此返回值来检查视频的结尾。
有时,cap可能尚未初始化捕获。在这种情况下,此代码显示错误。你可以通过cap.isOpened()方法检查它是否已初始化。如果是True
,那么确定。否则,使用cap.open()打开它。
你还可以使用cap.get(propId)
方法访问该视频的某些功能,其中propId是0到18之间的一个数字。每个数字表示视频的属性(如果适用于该视频),并且可以显示完整的详细信息在这里看到:cv::VideoCapture::get()。其中一些值可以使用cap.set(propId,value)
进行修改。value
是你想要的新值。
例如,我可以通过cap.get(cv.CAP_PROP_FRAME_WIDTH)
和cap.get(cv.CAP_PROP_FRAME_HEIGHT)
检查框架的宽度和高度。默认情况下,它的分辨率为640×480。但我想将其修改为320×240。只需使用和即可。ret = cap.set(cv.CAP_PROP_FRAME_WIDTH,320)
and ret = cap.set(cv.CAP_PROP_FRAME_HEIGHT,240)
.
注意
如果出现错误,请确保使用任何其他相机应用程序(例如Linux中的Cheese)都可以正常使用相机。
从文件播放视频
它与从相机捕获相同,只是用视频文件名更改摄像机索引。另外,在显示框架时,请使用适当的时间cv.waitKey()
。如果太小,则视频将非常快,而如果太大,则视频将变得很慢(嗯,这就是显示慢动作的方式)。正常情况下25毫秒就可以了。
import numpy as np
import cv2 as cv
cap = cv.VideoCapture('vtest.avi')
while cap.isOpened():
ret, frame = cap.read()
# 如果正确读取帧,ret为True
if not ret:
print("Can't receive frame (stream end?). Exiting ...")
break
gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
cv.imshow('frame', gray)
if cv.waitKey(1) == ord('q'):
break
cap.release()
cv.destroyAllWindows()
注意
确保安装了正确的 ffmpeg 或 gstreamer 版本。有时,使用视频捕获(Video Capture)是一件令人头疼的事情,主要原因是错误地安装了 ffmpeg / gstreamer。
保存视频
所以我们捕捉一个视频,一帧一帧地处理,我们想要保存这个视频。对于图像,它非常简单,只需使用 cv.imwrite()。这里还需要做一些工作。
这次我们创建一个 VideoWriter 对象。我们应该指定输出文件名(例如: output.avi)。然后我们应该指定 FourCC 代码(详见下一段)。然后传递帧率的数量和帧大小。最后一个是颜色标志。如果为 True
,编码器期望颜色帧,否则它与灰度帧一起工作。
FourCC:http://en.wikipedia.org/wiki/FourCC 是用于指定视频编解码器的4字节代码。可用代码列表可在fourcc.org中:http://www.fourcc.org/codecs.php 找到。它取决于平台。遵循编解码器对我来说效果很好。
- 在Fedora中:DIVX,XVID,MJPG,X264,WMV1,WMV2。(最好使用XVID。MJPG会生成大尺寸的视频。X264会生成非常小的尺寸的视频)
- 在Windows中:DIVX(尚待测试和添加)
- 在OSX中:MJPG(.mp4),DIVX(.avi),X264(.mkv)。
FourCC代码作为MJPG的cv.VideoWriter_fourcc('M','J','P','G')
or cv.VideoWriter_fourcc(*'MJPG')
传递。
在从摄像机捕获的代码下面,沿垂直方向翻转每一帧并保存。
import numpy as np
import cv2 as cv
cap = cv.VideoCapture(0)
# 定义编解码器并创建VideoWriter对象
fourcc = cv.VideoWriter_fourcc(*'XVID')
out = cv.VideoWriter('output.avi', fourcc, 20.0, (640, 480))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
print("Can't receive frame (stream end?). Exiting ...")
break
frame = cv.flip(frame, 0)
# 写翻转的框架
out.write(frame)
cv.imshow('frame', frame)
if cv.waitKey(1) == ord('q'):
break
# 完成工作后释放所有内容
cap.release()
out.release()
cv.destroyAllWindows()
原创文章,作者:磐石,如若转载,请注明出处:https://panchuang.net/2020/02/24/opencv-python-%e7%b3%bb%e5%88%97-%e5%9b%9b-%e8%a7%86%e9%a2%91%e5%85%a5%e9%97%a8/