1. 磐创AI-开放猫官方网站首页
  2. 系列教程
  3. OpenCV_Python

OpenCV-Python 系列 三十二 | 霍夫圈变换

本文是全系列中第36 / 63篇:OpenCV-Python

霍### 学习目标

在本章中,
– 我们将学习使用霍夫变换来查找图像中的圆。
– 我们将看到以下函数:cv.HoughCircles()

理论

圆在数学上表示为$(x-x_{center})^2+(y-y_{center})^2 = r^2$,其中$(x_{center},y_{center})$是圆的中心,$r$是圆的半径。从等式中,我们可以看到我们有3个参数,因此我们需要3D累加器进行霍夫变换,这将非常低效。因此,OpenCV使用更加技巧性的方法,即使用边缘的梯度信息的Hough梯度方法

我们在这里使用的函数是cv.HoughCircles()。它有很多参数,这些参数在文档中有很好的解释。因此,我们直接转到代码。

import numpy as np
import cv2 as cv
img = cv.imread('opencv-logo-white.png',0)
img = cv.medianBlur(img,5)
cimg = cv.cvtColor(img,cv.COLOR_GRAY2BGR)
circles = cv.HoughCircles(img,cv.HOUGH_GRADIENT,1,20,
                            param1=50,param2=30,minRadius=0,maxRadius=0)
circles = np.uint16(np.around(circles))
for i in circles[0,:]:
    # 绘制外圆
    cv.circle(cimg,(i[0],i[1]),i[2],(0,255,0),2)
    # 绘制圆心
    cv.circle(cimg,(i[0],i[1]),2,(0,0,255),3)
cv.imshow('detected circles',cimg)
cv.waitKey(0)
cv.destroyAllWindows()

结果如下:
OpenCV-Python 系列 三十二 | 霍夫圈变换

原创文章,作者:磐石,如若转载,请注明出处:https://panchuang.net/2020/03/18/opencv-python-%e7%b3%bb%e5%88%97-%e4%b8%89%e5%8d%81%e4%ba%8c-%e9%9c%8d%e5%a4%ab%e5%9c%88%e5%8f%98%e6%8d%a2/

发表评论

登录后才能评论

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息