1. 磐创AI-开放猫官方网站首页
  2. 系列教程
  3. OpenCV_Python

OpenCV-Python 系列 三十 | 模板匹配

本文是全系列中第20 / 63篇:OpenCV-Python

目标

在本章中,您将学习
– 使用模板匹配在图像中查找对象
– 你将看到以下功能:cv.matchTemplate(),cv.minMaxLoc()

理论

模板匹配是一种用于在较大图像中搜索和查找模板图像位置的方法。为此,OpenCV带有一个函数cv.matchTemplate()。
它只是将模板图​​像滑动到输入图像上(就像在2D卷积中一样),然后在模板图像下比较模板和输入图像的拼图。
OpenCV中实现了几种比较方法。(您可以检查文档以了解更多详细信息)。它返回一个灰度图像,其中每个像素表示该像素的邻域与模板匹配的程度。

如果输入图像的大小为(WxH),而模板图像的大小为(wxh),则输出图像的大小将为(W-w + 1,H-h + 1)。得到结果后,可以使用cv.minMaxLoc()函数查找最大/最小值在哪。将其作为矩形的左上角,并以(w,h)作为矩形的宽度和高度。该矩形是您模板的区域。

注意
如果使用cv.TM_SQDIFF作为比较方法,则最小值提供最佳匹配。

OpenCV中的模板匹配

作为示例,我们将在梅西的照片中搜索他的脸。所以我创建了一个模板,如下所示:
OpenCV-Python 系列 三十 | 模板匹配
我们将尝试所有比较方法,以便我们可以看到它们的结果如何:

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
img = cv.imread('messi5.jpg',0)
img2 = img.copy()
template = cv.imread('template.jpg',0)
w, h = template.shape[::-1]
# 列表中所有的6种比较方法
methods = ['cv.TM_CCOEFF', 'cv.TM_CCOEFF_NORMED', 'cv.TM_CCORR',
            'cv.TM_CCORR_NORMED', 'cv.TM_SQDIFF', 'cv.TM_SQDIFF_NORMED']
for meth in methods:
    img = img2.copy()
    method = eval(meth)
    # 应用模板匹配
    res = cv.matchTemplate(img,template,method)
    min_val, max_val, min_loc, max_loc = cv.minMaxLoc(res)
    # 如果方法是TM_SQDIFF或TM_SQDIFF_NORMED,则取最小值
    if method in [cv.TM_SQDIFF, cv.TM_SQDIFF_NORMED]:
        top_left = min_loc
    else:
        top_left = max_loc
    bottom_right = (top_left[0] + w, top_left[1] + h)
    cv.rectangle(img,top_left, bottom_right, 255, 2)
    plt.subplot(121),plt.imshow(res,cmap = 'gray')
    plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
    plt.subplot(122),plt.imshow(img,cmap = 'gray')
    plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
    plt.suptitle(meth)
    plt.show()

查看以下结果:

  • cv.TM_CCOEFF

OpenCV-Python 系列 三十 | 模板匹配

  • cv.TM_CCOEFF_NORMED
    OpenCV-Python 系列 三十 | 模板匹配

  • cv.TM_CCORR
    OpenCV-Python 系列 三十 | 模板匹配

  • cv.TM_CCORR_NORMED
    OpenCV-Python 系列 三十 | 模板匹配

  • cv.TM_SQDIFF
    OpenCV-Python 系列 三十 | 模板匹配

  • cv.TM_SQDIFF_NORMED
    OpenCV-Python 系列 三十 | 模板匹配

您会看到,使用cv.TM_CCORR的结果并不理想。

多对象的模板匹配

在上一节中,我们在图像中搜索了梅西的脸,该脸在图像中仅出现一次。假设您正在搜索具有多次出现的对象,则cv.minMaxLoc()不会为您提供所有位置。在这种情况下,我们将使用阈值化。因此,在此示例中,我们将使用著名游戏Mario的屏幕截图,并在其中找到硬币。

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
img_rgb = cv.imread('mario.png')
img_gray = cv.cvtColor(img_rgb, cv.COLOR_BGR2GRAY)
template = cv.imread('mario_coin.png',0)
w, h = template.shape[::-1]
res = cv.matchTemplate(img_gray,template,cv.TM_CCOEFF_NORMED)
threshold = 0.8
loc = np.where( res >= threshold)
for pt in zip(*loc[::-1]):
    cv.rectangle(img_rgb, pt, (pt[0] + w, pt[1] + h), (0,0,255), 2)
cv.imwrite('res.png',img_rgb)

结果:

OpenCV-Python 系列 三十 | 模板匹配

附加资源

练习

原创文章,作者:磐石,如若转载,请注明出处:https://panchuang.net/2020/03/18/opencv-python-%e7%b3%bb%e5%88%97-%e4%b8%89%e5%8d%81-%e6%a8%a1%e6%9d%bf%e5%8c%b9%e9%85%8d/

发表评论

登录后才能评论

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息