OpenCV-Python 系列 四十一 | BRIEF(二进制的鲁棒独立基本特征)
本文是全系列中第45 / 63篇:OpenCV-Python
- OpenCV-Python 系列 四 | 视频入门
- OpenCV-Python 系列 十二 | 图像的几何变换
- OpenCV-Python 系列 二十 | 轮廓:入门
- OpenCV-Python 系列 二十八 | 直方图4:直方图反投影
- OpenCV-Python 系列 三十六 | 哈里斯角检测
- OpenCV-Python 系列 四十四 | 特征匹配 + 单应性查找对象
- OpenCV-Python 系列 五十二 | 理解K近邻
- OpenCV-Python 系列 六十 | 高动态范围
- OpenCV-Python 系列 五 | OpenCV中的绘图功能
- OpenCV-Python 系列 十三 | 图像阈值
- OpenCV-Python 系列 二十一 | 轮廓特征
- OpenCV-Python 系列 二十九 | 傅里叶变换
- OpenCV-Python 系列 三十七 | Shi-tomas拐角检测器和益于跟踪的特征
- OpenCV-Python 系列 四十五 | 如何使用背景分离方法
- OpenCV-Python 系列 五十三 | 使用OCR手写数据集运行KNN
- OpenCV-Python 系列 六十一 | 级联分类器
- OpenCV-Python 系列 六 | 鼠标作为画笔
- OpenCV-Python 系列 十四 | 图像阈值
- OpenCV-Python 系列 二十二 | 轮廓属性
- OpenCV-Python 系列 三十 | 模板匹配
- OpenCV-Python 系列 三十八 | SIFT尺度不变特征变换
- OpenCV-Python 系列 四十六 | Meanshift和Camshift
- OpenCV-Python 系列 五十四 | 理解SVM
- OpenCV-Python 系列 六十二 | 级联分类器训练
- OpenCV-Python 系列 七 | 轨迹栏作为调色板
- OpenCV-Python 系列 十五 | 图像平滑
- OpenCV-Python 系列 二十三 | 轮廓:更多属性
- OpenCV-Python 系列 三十一 | 霍夫线变换
- OpenCV-Python 系列 三十九 | SURF简介(加速的强大功能)
- OpenCV-Python 系列 四十七 | 光流
- OpenCV-Python 系列 五十五 | 使用OCR手写数据集运行SVM
- OpenCV-Python 系列 六十三 | OpenCV-Python Bindings 如何工作?
- OpenCV-Python 系列 八 | 图像的基本操作
- OpenCV-Python 系列 十六 | 形态学转换
- OpenCV-Python 系列 二十四 | 轮廓分层
- OpenCV-Python 系列 三十二 | 霍夫圈变换
- OpenCV-Python 系列 四十 | 用于角点检测的FAST算法
- OpenCV-Python 系列 四十八 | 相机校准
- OpenCV-Python 系列 五十六 | 理解K-Means聚类
- OpenCV-Python 系列 一 | 系列简介与目录
- OpenCV-Python 系列 九 | 图像上的算术运算
- OpenCV-Python 系列 十七 | 图像梯度
- OpenCV-Python 系列 二十五 | 直方图-1:查找、绘制和分析
- OpenCV-Python 系列 三十三 | 图像分割与Watershed算法
- OpenCV-Python 系列 四十一 | BRIEF(二进制的鲁棒独立基本特征)
- OpenCV-Python 系列 四十九 | 姿态估计
- OpenCV-Python 系列 五十七 | OpenCV中的K-Means聚类
- OpenCV-Python 系列 二 | 安装OpenCV-Python
- OpenCV-Python 系列 十 | 性能衡量和提升技术
- OpenCV-Python 系列 十八 | Canny边缘检测
- OpenCV-Python 系列 二十六 | 直方图-2:直方图均衡
- OpenCV-Python 系列 三十四 | 交互式前景提取使用GrabCut算法
- OpenCV-Python 系列 四十二 | ORB(面向快速和旋转的BRIEF)
- OpenCV-Python 系列 五十 | 对极几何
- OpenCV-Python 系列 五十八 | 图像去噪
- OpenCV-Python 系列 三 | 图像入门
- OpenCV-Python 系列 十一 | 改变颜色空间
- OpenCV-Python 系列 十九 | 图像金字塔
- OpenCV-Python 系列 二十七 | 直方图-3:二维直方图
- OpenCV-Python 系列 三十五 | 理解特征
- OpenCV-Python 系列 四十三 | 特征匹配
- OpenCV-Python 系列 五十一 | 立体图像的深度图
- OpenCV-Python 系列 五十九 | 图像修补
目标
在本章中,
– 我们将看到BRIEF算法的基础知识
理论
我们知道SIFT使用128维矢量作为描述符。由于它使用浮点数,因此基本上需要512个字节。同样,SURF最少也需要256个字节(用于64像素)。为数千个功能部件创建这样的向量会占用大量内存,这对于资源受限的应用程序尤其是嵌入式系统而言是不可行的。内存越大,匹配所需的时间越长。
但是实际匹配可能不需要所有这些尺寸。我们可以使用PCA,LDA等几种方法对其进行压缩。甚至使用LSH(局部敏感哈希)进行哈希的其他方法也可以将这些SIFT描述符中的浮点数转换为二进制字符串。这些二进制字符串用于使用汉明距离匹配要素。这提供了更快的速度,因为查找汉明距离仅是应用XOR和位数,这在具有SSE指令的现代CPU中非常快。但是在这里,我们需要先找到描述符,然后才可以应用散列,这不能解决我们最初的内存问题。
现在介绍BRIEF。它提供了一种直接查找二进制字符串而无需查找描述符的快捷方式。它需要平滑的图像补丁,并以独特的方式(在纸上展示)选择一组$n_d(x,y)$位置对。然后,在这些位置对上进行一些像素强度比较。例如,令第一位置对为$p$和$q$。如果$I(p)<I(q)$,则结果为1,否则为0。将其应用于所有$n_d$个位置对以获得$n_d$维位串。
该$n_d$可以是128、256或512。OpenCV支持所有这些,但默认情况下将是256(OpenCV以字节为单位表示,因此值将为16、32和64)。因此,一旦获得此信息,就可以使用汉明距离来匹配这些描述符。
重要的一点是,BRIEF是特征描述符,它不提供任何查找特征的方法。因此,您将不得不使用任何其他特征检测器,例如SIFT,SURF等。本文建议使用CenSurE,它是一种快速检测器,并且BIM对于CenSurE点的工作原理甚至比对SURF点的工作要好一些。
简而言之,BRIEF是一种更快的方法特征描述符计算和匹配。除了平面内旋转较大的情况,它将提供很高的识别率。
OpenCV中的BRIEF
下面的代码显示了借助CenSurE检测器对Brief描述符的计算。(在OpenCV中,CenSurE检测器称为STAR检测器)注意,您需要使用opencv contrib)才能使用它。
import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('simple.jpg',0)
# 初始化FAST检测器
star = cv.xfeatures2d.StarDetector_create()
# 初始化BRIEF提取器
brief = cv.xfeatures2d.BriefDescriptorExtractor_create()
# 找到STAR的关键点
kp = star.detect(img,None)
# 计算BRIEF的描述符
kp, des = brief.compute(img, kp)
print( brief.descriptorSize() )
print( des.shape )
函数brief.getDescriptorSize()
给出以字节为单位的$n_d$大小。默认情况下为32。下一个是匹配项,这将在另一章中进行。
附加资源
- Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua, “BRIEF: Binary Robust Independent Elementary Features”, 11th European Conference on Computer Vision (ECCV), Heraklion, Crete. LNCS Springer, September 2010.
- LSH (Locality Sensitive Hashing) at wikipedia.
原创文章,作者:磐石,如若转载,请注明出处:https://panchuang.net/2020/03/26/opencv-python-%e7%b3%bb%e5%88%97-%e5%9b%9b%e5%8d%81%e4%b8%80-brief%e4%ba%8c%e8%bf%9b%e5%88%b6%e7%9a%84%e9%b2%81%e6%a3%92%e7%8b%ac%e7%ab%8b%e5%9f%ba%e6%9c%ac%e7%89%b9%e5%be%81/