1. 磐创AI-开放猫官方网站首页
  2. 机器学习
  3. TensorFlowNews

学习GAN必须阅读的10篇论文

学习GAN必须阅读的10篇论文

作者 | 小韩

编辑 | 安可

出品 | 磐创AI技术团队

生成对抗网络是深度学习中最有趣和最受欢迎的应用之一。本文将列出 10 篇关于 GAN 的论文,这些论文详细介绍了 GAN,以及了解最新技术的基础。

目录:

  1. DCGAN

  2. Improved Techniques for Training GANs

  3. Conditional GANs

  4. Progressively Growing GANs

  5. BigGAN

  6. StyleGAN

  7. CycleGAN

  8. Pix2Pix

  9. StackGAN

  10. Generative Adversarial Networks

DCGANs (2015)

建议使用 DCGAN 开启您的 GAN 之旅。这篇论文展示了卷积层与 GAN 是怎样组合的,还提供了其他一系列其他的参考架构。论文还讨论了诸如可视化GAN特征,潜在空间插值,用鉴别器特征训练分类器,结果评价等方面,这些方面都会出现在您的 GAN 研究中。总之,DCGAN 论文是必读的 GAN 论文,因为它的结构非常清晰,代码容易使用,可以马上用在您的 GAN 开发中。

学习GAN必须阅读的10篇论文DCGAN模型 带有上采样卷积层的生成器结构

地址(https://arxiv.org/abs/1511.06434)

Improved Techniques for Training GANs (2016)

这篇论文(作者包括了Ian Goodfellow)提供了一系列的建议,用来建立DCGAN论文中提出的网络结构。这篇论文会帮助您理解GAN不稳定性的最佳假设。此外,本文还提出了许多稳定DCGAN训练的其他技术,包括特征匹配,小批量识别,历史平均,单面标签平滑和虚拟批量标准化。通过这些可以建立一个简单的DCGAN,是一个不错的经历,可帮助更好地理解GAN。

地址(https://arxiv.org/abs/1606.03498)

Conditional GANs (2014)

这是一篇很好的论文。Conditional GANs 是最先进的GAN的核心主题。这篇论文展示了如何整合数据的标签,从而实现更稳定的GAN训练。这种使用先验信息调节GAN的概念在GAN研究的未来工作中是一个反复出现的主题,对于关注图像到图像或文本到图像的论文尤其重要。

学习GAN必须阅读的10篇论文
Conditional GANs的体系结构,除了随机噪声向量z之外,类标签y被连接在一起作为网络的输入

地址(https://arxiv.org/abs/1411.1784)

Progressively Growing of GANs for Improved Quality, Stability, and Variation (2017)

由于其令人印象深刻的结果和对GAN问题的创造性方法,这篇论文是必须要阅读一下的。它采用不同层次结构,GAN 分辨率从4²到8²,最高到1024²。相对于目标图像分辨率大小,GAN的不稳定性大大增加,本文就提出了该问题的解决方法。

学习GAN必须阅读的10篇论文
该图描绘了逐步增长的GAN多规模结构。 该模型从4²逐步上升到1024²

地址(https://arxiv.org/abs/1710.10196)

BigGAN (2019)

BigGAN模型是ImageNet的当前最新技术。这种模型很难在本地机器上实现,并且模型中有许多组件,如自注意力,频谱归一化和带有投影鉴别器的cGAN,这些都在他们的论文中得到了很好的解释。而且论文对当前最新技术的基础论文进行了全面的概述。

学习GAN必须阅读的10篇论文
来自BigGAN最先进模型的漂亮样品

地址(https://arxiv.org/abs/1809.11096)

StyleGAN (2019)

StyleGAN模型可以说在这方面是最好的,尤其是在隐空间控制中。该模型使用称为自适应实例归一化(AdaIN)的神经风格转移机制来控制隐空间向量z,而不像之前的其他方式。映射网络和AdaIN训练分布在整个生成器模型中的的组合使得自己很难实现,但它仍然值得阅读,它包含了许多有趣的想法。

学习GAN必须阅读的10篇论文
StyleGAN架构,允许最先进的隐空间控制

地址(https://arxiv.org/abs/1812.04948)

CycleGAN (2017)

CycleGAN论文与前面提到的6篇论文不同,因为它讨论了图像到图像的迁移问题而不是随机向量的图像合成问题。CycleGAN可以更具体地处理没有配对的图像转换的训练样本。因为循环一致性损失公式的优雅以及如何稳定GAN训练的方式,这是一篇值得阅读的论文。有许多有趣的程序使用CycleGAN,例如超分辨率,风格迁移,让马变为斑马。

学习GAN必须阅读的10篇论文
循环一致性损失背后的中心思想,从法语翻译成英语并回到法语的句子应该是同一句话

地址(https://arxiv.org/abs/1703.10593)

Pix2Pix (2016)

Pix2Pix是另一种图像到图像转换的GAN模型。该框架使用配对的训练样本,并在GAN模型中使用许多不同的配置。阅读本文时,对我来说最有趣的事情之一就是对PatchGAN的讨论。PatchGAN观察图像的70 x 70区域,以确定它们是真实的还是虚假的,而不是查看整个图像。该模型还提出了一个有趣的U-Net风格生成器结构,以及在生成器模型中使用ResNet样式的跳跃连接。有许多很酷的应用,例如边缘图到照片般真实的图像。

学习GAN必须阅读的10篇论文
具有成对训练样本的图像到图像的转换

地址(https://arxiv.org/abs/1611.07004)

StackGAN (2017)

StackGAN论文与先前的论文相比非常独特。它非常类似于Conditional GANs和Progressively Growing GANs。StackGAN模型的工作方式类似于Progressively Growing GANs,因为它可以在多尺度上工作。StackGAN首先输出64 * 64的图像,然后将其作为先验信息生成256 * 256的图像。StackGAN非常独特,因为它是从自然语言文本到图像的转换。这是通过改变文本嵌入来实现的,以便得到视觉特征。这是一篇非常有趣的论文,看到StyleGAN中展示的潜在空间控制与StackGAN中定义的自然语言接口相结合,令人惊叹。

学习GAN必须阅读的10篇论文
StackGAN以文本嵌入为条件的多尺度结构的思想

地址(https://arxiv.org/abs/1612.03242)

Generative Adversarial Networks (2014)

Ian Goodfellow的原论文对任何研究GAN的人来说都是必读的。本文定义了GAN框架并讨论了“非饱和”损失函数。本文还给出了最优鉴别器的推导,这是最近GAN论文中经常出现的证明。本文还证明了GAN在实验中对MNIST,TFD和CIFAR-10图像数据集的有效性。

地址(https://arxiv.org/abs/1406.2661)

磐创粉丝福利加磐小仙好友(微信号:cellerai)并发送关键字“python基础”即可 0元学习七月在线精品课程《Python基础课程升级版》


你也许还想

   领域综述 | 知识图谱概论(一)

   DL|CNN可视化研究综述(一)

   SVM | 支持向量机原理讲解(一)

欢迎扫码关注:

学习GAN必须阅读的10篇论文


觉得赞你就点在看,多谢大佬学习GAN必须阅读的10篇论文

磐创AI:http://www.panchuangai.com/ 智能客服:http://www.panchuangai.com/ TensorFlow:http://panchuang.net 推荐关注公众号:磐创AI

原创文章,作者:fendouai,如若转载,请注明出处:https://panchuang.net/2019/03/25/02572456c9/

发表评论

登录后才能评论

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息