1. 磐创AI-开放猫官方网站首页
  2. 系列教程
  3. PyTorch

两行代码统计模型参数量与FLOPs,这个PyTorch小工具值得一试

点击上方“磐创AI”,选择“置顶公众号”

精品文章,第一时间送达

两行代码统计模型参数量与FLOPs,这个PyTorch小工具值得一试

转载自:机器之心,未经允许不得二次转载

你的模型到底有多少参数,每秒的浮点运算到底有多少,这些你都知道吗?近日,GitHub 开源了一个小工具,它可以统计 PyTorch 模型的参数量与每秒浮点运算数(FLOPs)。有了这两种信息,模型大小控制也就更合理了。

其实模型的参数量好算,但浮点运算数并不好确定,我们一般也就根据参数量直接估计计算量了。但是像卷积之类的运算,它的参数量比较小,但是运算量非常大,它是一种计算密集型的操作。反观全连接结构,它的参数量非常多,但运算量并没有显得那么大。


此外,机器学习还有很多结构没有参数但存在计算,例如和  等。因此,PyTorch-OpCounter 这种能直接统计 FLOPs 的工具还是非常有吸引力的。


  • PyTorch-OpCounter GitHub 地址:https://github.com/Lyken17/pytorch-OpCounter


OpCouter


PyTorch-OpCounter 的安装和使用都非常简单,并且还能定制化统计规则,因此那些特殊的运算也能自定义地统计进去。


我们可以使用 pip 简单地完成安装:pip install thop。不过 GitHub 上的代码总是最新的,因此也可以从 GitHub 上的脚本安装。


对于 torchvision 中自带的模型,Flops 统计通过以下几行代码就能完成:

from torchvision.models import resnet50from thop import profile
model = resnet50()input = torch.randn(1, 3, 224, 224)flops, params = profile(model, inputs=(input, ))


我们测试了一下 DenseNet-121,用 OpCouter 统计了参数量与运算量。API 的输出如下所示,它会告诉我们具体统计了哪些结构,它们的配置又是什么样的。


两行代码统计模型参数量与FLOPs,这个PyTorch小工具值得一试


最后输出的浮点运算数和参数量分别为如下所示,换算一下就能知道 DenseNet-121 的参数量约有 798 万,计算量约有 2.91 GFLOPs。

flops: 2914598912.0parameters: 7978856.0


OpCouter 是怎么算的


我们可能会疑惑,OpCouter 到底是怎么统计的浮点运算数。其实它的统计代码在项目中也非常可读,从代码上看,目前该工具主要统计了视觉方面的运算,包括各种卷积、激活函数、池化、批归一化等。例如最常见的二维卷积运算,它的统计代码如下所示:

def count_conv2d(m, x, y):    x = x[0]
cin = m.in_channels cout = m.out_channels kh, kw = m.kernel_size batch_size = x.size()[0]
out_h = y.size(2) out_w = y.size(3)
# ops per output element # kernel_mul = kh * kw * cin # kernel_add = kh * kw * cin - 1 kernel_ops = multiply_adds * kh * kw bias_ops = 1 if m.bias is not None else 0 ops_per_element = kernel_ops + bias_ops
# total ops # num_out_elements = y.numel() output_elements = batch_size * out_w * out_h * cout total_ops = output_elements * ops_per_element * cin // m.groups
    m.total_ops = torch.Tensor([int(total_ops)])


总体而言,模型会计算每一个卷积核发生的乘加运算数,再推广到整个卷积层级的总乘加运算数。


定制你的运算统计


有一些运算统计还没有加进去,如果我们知道该怎样算,那么就可以写个自定义函数。

class YourModule(nn.Module):    # your definitiondef count_your_model(model, x, y):    # your rule here
input = torch.randn(1, 3, 224, 224)flops, params = profile(model, inputs=(input, ),                        custom_ops={YourModule: count_your_model})


最后,作者利用这个工具统计了各种流行视觉模型的参数量与 FLOPs 量:


两行代码统计模型参数量与FLOPs,这个PyTorch小工具值得一试


你也许还想

● 知识图谱里的知识表示:RDF

● 一文综述python读写csv xml json文件各种骚操作

● 从零开始实现穿衣图像分割完整教程(附python代码演练)


欢迎扫码关注:

两行代码统计模型参数量与FLOPs,这个PyTorch小工具值得一试


两行代码统计模型参数量与FLOPs,这个PyTorch小工具值得一试 点击下方 |  | 了解更多

磐创AI:http://www.panchuangai.com/ 智能客服:http://www.panchuangai.com/ TensorFlow:http://panchuang.net 推荐关注公众号:磐创AI

原创文章,作者:fendouai,如若转载,请注明出处:https://panchuang.net/2019/07/08/594ac15864/

发表评论

登录后才能评论

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息