作者|PRUDHVI VARMA
编译|VK
来源|Analytics Indiamag
在当今世界,人工智能已被大多数商业运作所应用,而且由于先进的深度学习框架,它非常容易部署。这些深度学习框架提供了高级编程接口,帮助我们设计深度学习模型。使用深度学习框架,它通过提供内置的库函数来减少开发人员的工作,从而使我们能够更快更容易地构建模型。
在本文中,我们将构建相同的深度学习框架,即在Keras、PyTorch和Caffe中对同一数据集进行卷积神经网络图像分类,并对所有这些方法的实现进行比较。最后,我们将看到PyTorch构建的CNN模型如何优于内置Keras和Caffe的同行。
本文涉及的主题
-
如何选择深度学习框架。
-
Keras的优缺点
-
PyTorch的优缺点
-
Caffe的优缺点
-
在Keras、PyTorch和Caffe实现CNN模型。
选择深度学习框架
在选择深度学习框架时,有一些指标可以找到最好的框架,它应该提供并行计算、良好的运行模型的接口、大量内置的包,它应该优化性能,同时也要考虑我们的业务问题和灵活性,这些是我们在选择深度学习框架之前要考虑的基本问题。让我们比较三个最常用的深度学习框架Keras、Pytorch和Caffe。
Keras
Keras是一个开源框架,由Google工程师Francois Chollet开发,它是一个深度学习框架,我们只需编写几行代码,就可以轻松地使用和评估我们的模型。
如果你不熟悉深度学习,Keras是初学者最好的入门框架,Keras对初学者十分友好,并且易于与python一起工作,并且它有许多预训练模型(VGG、Inception等)。不仅易于学习,而且它支持Tensorflow作为后端。
使用Keras的局限性
-
Keras需要改进一些特性
-
我们需要牺牲速度来换取它的用户友好性
-
有时甚至使用gpu也需要很长时间。
使用Keras框架的实际实现
在下面的代码片段中,我们将导入所需的库。
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
超参数:
batch_size = 128
num_classes = 10
epochs = 12
img_rows, img_cols = 28, 28
(x_train, y_train), (x_test, y_test) = mnist.load_data()
在下面的代码片段中,我们将构建一个深度学习模型,其中包含几个层,并分配优化器、激活函数和损失函数。
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adam(),
metrics=['accuracy'])
在下面的代码片段中,我们将训练和评估模型。
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
PyTorch
PyTorch是一个由Facebook研究团队开发的开源框架,它是深度学习模型的一种实现,它提供了python环境提供的所有服务和功能,它允许自动微分,有助于加速反向传播过程,PyTorch提供了各种模块,如torchvision,torchaudio,torchtext,可以灵活地在NLP中工作,计算机视觉。PyTorch对于研究人员比开发人员更灵活。
PyTorch的局限性
-
PyTorch在研究人员中比在开发人员中更受欢迎。
-
它缺乏生产力。
使用PyTorch框架实现
安装所需的库
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data.dataloader as dataloader
import torch.optim as optim
from torch.utils.data import TensorDataset
from torchvision import transforms
from torchvision.datasets import MNIST
在下面的代码片段中,我们将加载数据集并将其拆分为训练集和测试集。
train = MNIST('./data', train=True, download=True, transform=transforms.Compose([
transforms.ToTensor(),
]), )
test = MNIST('./data', train=False, download=True, transform=transforms.Compose([
transforms.ToTensor(),
]), )
dataloader_args = dict(shuffle=True, batch_size=64,num_workers=1, pin_memory=True)
train_loader = dataloader.DataLoader(train, **dataloader_args)
test_loader = dataloader.DataLoader(test, **dataloader_args)
train_data = train.train_data
train_data = train.transform(train_data.numpy())
在下面的代码片段中,我们将构建我们的模型,并设置激活函数和优化器。
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.fc1 = nn.Linear(784, 548)
self.bc1 = nn.BatchNorm1d(548)
self.fc2 = nn.Linear(548, 252)
self.bc2 = nn.BatchNorm1d(252)
self.fc3 = nn.Linear(252, 10)
def forward(self, x):
a = x.view((-1, 784))
b = self.fc1(a)
b = self.bc1(b)
b = F.relu(b)
b = F.dropout(b, p=0.5)
b = self.fc2(b)
b = self.bc2(b)
b = F.relu(b)
b = F.dropout(b, p=0.2)
b = self.fc3(b)
out = F.log_softmax(b)
return out
model = Model()
model.cuda()
optimizer = optim.SGD(model.parameters(), lr=0.001)
在下面的代码片段中,我们将训练我们的模型,在训练时,我们将指定损失函数,即交叉熵。
model.train()
losses = []
for epoch in range(12):
for batch_idx, (data,data_1) in enumerate(train_loader):
data,data_1 = Variable(data.cuda()), Variable(target.cuda())
optimizer.zero_grad()
y_pred = model(data)
loss = F.cross_entropy(y_pred, target)
losses.append(loss.data[0])
loss.backward()
optimizer.step()
if batch_idx % 100 == 1:
print('\r Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch,
batch_idx * len(data),
len(train_loader.dataset), 100. * batch_idx / len(train_loader),
loss.data[0]),
end='')
print()
#评估模型
evaluate=Variable(test_loader.dataset.test_data.type_as(torch.FloatTensor())).cuda()
output = model(evaluate)
predict = output.data.max(1)[1]
pred = pred.eq(evaluate.data)
accuracy = pred.sum()/pred.size()[0]
print('Accuracy:', accuracy)
Caffe
Caffe(Convolutional Architecture for Fast Feature Embedding)是Yangqing Jia开发的开源深度学习框架。该框架支持人工智能领域的研究人员和工业应用。
大部分开发者使用Caffe是因为它的速度,它使用一个NVIDIA K40 GPU每天可以处理6000万张图像。Caffe有很多贡献者来更新和维护框架,而且与深度学习的其他领域相比,Caffe在计算机视觉模型方面工作得很好。
Caffe的局限性
Caffe没有更高级别的API,所以很难做实验。
在Caffe中,为了部署我们的模型,我们需要编译源代码。
安装Caffe
!apt install -y caffe-tools-cpu
导入所需的库
import os
import numpy as np
import math
import caffe
import lmdb
在下面的代码片段中,我们将指定硬件环境。
os.environ["GLOG_minloglevel"] = '2'
CAFFE_ROOT="/caffe"
os.chdir(CAFFE_ROOT)
USE_GPU = True
if USE_GPU:
caffe.set_device(0)
caffe.set_mode_gpu()
else:
caffe.set_mode_cpu()
caffe.set_random_seed(1)
np.random.seed(24)
在下面的代码片段中,我们将定义有助于数据转换的image_generator和batch_generator 。
def image_generator(db_path):
db_handle = lmdb.open(db_path, readonly=True)
with db_handle.begin() as db:
cur = db.cursor()
for _, value in cur:
datum = caffe.proto.caffe_pb2.Datum()
datum.ParseFromString(value)
int_x = caffe.io.datum_to_array(datum)
x = np.asfarray(int_x, dtype=np.float32) t
yield x - 128
def batch_generator(shape, db_path):
gen = image_generator(db_path)
res = np.zeros(shape)
while True:
for i in range(shape[0]):
res[i] = next(gen)
yield res
在下面的代码片段中,我们将给出MNIST数据集的路径。
num_epochs = 0
iter_num = 0
db_path = "content/mnist/mnist_train_lmdb"
db_path_test = "content/mnist/mnist_test_lmdb"
base_lr = 0.01
gamma = 1e-4
power = 0.75
for epoch in range(num_epochs):
print("Starting epoch {}".format(epoch))
input_shape = net.blobs["data"].data.shape
for batch in batch_generator(input_shape, db_path):
iter_num += 1
net.blobs["data"].data[...] = batch
net.forward()
for name, l in zip(net._layer_names, net.layers):
for b in l.blobs:
b.diff[...] = net.blob_loss_weights[name]
net.backward()
learning_rate = base_lr * math.pow(1 + gamma * iter_num, - power)
for l in net.layers:
for b in l.blobs:
b.data[...] -= learning_rate * b.diff
if iter_num % 50 == 0:
print("Iter {}: loss={}".format(iter_num, net.blobs["loss"].data))
if iter_num % 200 == 0:
print("Testing network: accuracy={}, loss={}".format(*test_network(test_net, db_path_test)))
使用下面的代码片段,我们将获得最终的准确性。
print("Training finished after {} iterations".format(iter_num))
print("Final performance: accuracy={}, loss={}".format(*test_network(test_net, db_path_test)))
结论
在本文中,我们演示了使用三个著名框架:Keras、PyTorch和Caffe实现CNN图像分类模型的。我们可以看到,PyTorch开发的CNN模型在精确度和速度方面都优于在Keras和Caffe开发的CNN模型。
作为一个初学者,我一开始使用Keras,这对于初学者是一个非常简单的框架,但它的应用是有限的。但是PyTorch和Caffe在速度、优化和并行计算方面是非常强大的框架。
原文链接:https://analyticsindiamag.com/keras-vs-pytorch-vs-caffe-comparing-the-implementation-of-cnn/
欢迎关注磐创AI博客站:
http://panchuang.net/
sklearn机器学习中文官方文档:
http://sklearn123.com/
欢迎关注磐创博客资源汇总站:
http://docs.panchuang.net/
原创文章,作者:磐石,如若转载,请注明出处:https://panchuang.net/2020/09/01/keras-vs-pytorch-vs-caffe%ef%bc%9acnn%e5%ae%9e%e7%8e%b0%e5%af%b9%e6%af%94/