作者|Satyam Kumar
编译|VK
来源|Towards Data Science
Q-Q图是检验任何随机变量(如正态分布、指数分布、对数正态分布等)分布的图形方法,是观察任何分布性质的一种统计方法。
例如,如果给定的一个分布需要验证它是否是正态分布,我们运行统计分析并将未知分布与已知正态分布进行比较。然后通过观察Q-Q图的结果,我们可以确定给定的分布是否正态分布。
绘制Q-Q图的步骤:
-
给定一个未知的随机变量。
-
找到每个百分位值
-
生成一个已知的随机分布,根据该分布同样遵循步骤1-2。
-
绘制Q-Q图
给定一个随机分布,需要验证它是否为正态/高斯分布。为了便于理解,我们将这个未知分布命名为X,将已知的正态分布命名为Y。
生成未知分布X:
X = np.random.normal(loc=50, scale=25, size=1000)
我们正在生成一个正态分布,有1000个值,平均值=50,标准差=25。
查找1%~100%:
X_100 = []
for i in range(1,101):
X_100.append(np.percentile(X, i))
计算每个百分位数(1%,2%,3%,. . .,99%,100%)X的随机分布值,并将其存储在X_100中。
生成已知的随机分布Y及其百分位值:
Y = np.random.normal(loc=0, scale=1, size=1000)
生成一个正态分布,其平均值为0,标准偏差为1,需要与未知分布X进行比较,以验证X分布是否正态分布。
Y_100 = []
for i in range(101):
Y_100.append(np.percentile(Y, i))
计算每个百分位数(1%,2%,3%,. . .,99%,100%)Y的随机分布值,并将其存储在Y_100中。
绘图:
为以上获得的未知分布值绘制散点图。
这里X是未知分布,要与Y这个正态分布相比。
对于Q-Q图,如果图中的散点在一条直线上,则两个随机变量具有相同的分布,否则它们具有不同的分布。
从上面的Q-Q图可以看出X是正态分布的。
如果两个分布不一样呢?
如果X不是正态分布,并且它有其他分布,那么如果Q-Q图是在X和正态分布之间绘制的,那么散射点就不会在一条直线上。
这里,X分布是对数正态分布,因此Q-Q图中的散射点不是直线。
让我们再观察一下:
这是4个不同条件下X和Y分布的Q-Q图。
- 左上:对数正态分布与正态分布的QQ图
- 右上:正态与指数分布的QQ图
- 左下:指数与指数分布的QQ图
- 右下:logistic与logistic分布的QQ图
python实现:
import numpy as np
import matplotlib.pyplot as plt
X = np.random.normal(loc=50, scale=25, size=1000)
X_100 = []
for i in range(1,101):
X_100.append(np.percentile(X, i))
Y = np.random.normal(loc=0, scale=1, size=1000)
Y_100 = []
for i in range(1,101):
Y_100.append(np.percentile(Y, i))
plt.scatter(X_100, Y_100)
plt.grid()
plt.ylabel("Y - normal distribution")
plt.xlabel("X - normal distribution")
plt.show()
结论
Q-Q图可以用来比较任意两个分布,并且可以通过与已知分布的比较来验证未知分布。这种方法有一个主要的局限性,即需要大量的数据点,因为得出较少的数据不是明智的决定。通过观察Q-Q图可以预测这两种分布是否相同。
原文链接:https://towardsdatascience.com/how-to-verify-the-distribution-of-data-using-q-q-plots-acdb7ca2d576
欢迎关注磐创AI博客站:
http://panchuang.net/
sklearn机器学习中文官方文档:
http://sklearn123.com/
欢迎关注磐创博客资源汇总站:
http://docs.panchuang.net/
原创文章,作者:磐石,如若转载,请注明出处:https://panchuang.net/2020/10/19/%e5%a6%82%e4%bd%95%e4%bd%bf%e7%94%a8q-q%e5%9b%be%e9%aa%8c%e8%af%81%e6%95%b0%e6%8d%ae%e7%9a%84%e5%88%86%e5%b8%83/